Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.399
Filtrar
1.
J Food Sci Technol ; 61(6): 1069-1082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562595

RESUMO

Extraction of bioactive compounds for application in nutraceuticals is gaining popularity. For this, there is a search for low-cost substrates that would make the end product and the process more economical. Mushroom waste (stalk, cap, stem etc.) is one such high valued substrate that has received much attention recently due to its rich reserves of terpenoids, polyphenols, sesquiterpenes, alkaloids, lactones, sterols, antioxidative vitamins, anthocyanidins, glycoproteins and polysaccharides, among others. However, there is a need to identify green and hybrid technologies that could make the bioactive extraction process from these substrates safe, efficient and sustainable. To this effect, many emerging technologies (supercritical fluid, ultrasound-, enzyme- and microwave-assisted extraction) have been explored in the last decade which have shown potential for scale-up with high productivity. This review systematically discusses such technologies highlighting the current challenges faced during waste processing and the research directives needed for further advancements in the field.

2.
J Food Sci Technol ; 61(6): 1157-1164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562599

RESUMO

The study aimed to optimize ultrasonic (US: 40 kHz/200 W for 10, 20, 30, 40, and 50 min), and microwave (MW: 160 W for 45, 90, 125, 180, and 225 s) pretreatment conditions on protein extraction yield and degree of protein hydrolysis (DH) from almond de-oiled meal, an industrial by-product. First order model was used to describe the kinetics of almond protein hydrolysates obtained with Alcalase. The highest DH, 10.95% was recorded for the US-50 min and 8.87% for MW-45 s; while it was 5.76% for the untreated/control sample. At these optimized pretreatment conditions, a 1.16- and 1.18-fold increment in protein recovery was observed for the US and MW pretreatments, respectively in comparison to the conventional alkaline extraction. The molecular weight distribution recorded for pretreated samples disclosed a significant reduction in the band thickness in comparison with control. Both the pretreatments resulted in a significant increase (P < 0.05) in the antioxidant activity, and TCA solubility index when compared with the control. Results evinced that US and/or MW pretreatments before enzymatic hydrolysis can be a promising approach for the valorization of almond meal for its subsequent use as an ingredient for functional foods/nutraceuticals which otherwise fetches low value as an animal feed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38565125

RESUMO

Magnonicsis a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications, and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage, and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks, and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering, and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes.

4.
Small ; : e2311312, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566552

RESUMO

The exploitation of multicomponent composites (MCCs) has become the main pathway for obtaining advanced microwave absorption materials (MAMs). Herein, a metal valence state modulation strategy is proposed to tune the electromagnetic (EM) parameters and improve microwave absorption performances. Core@shell hollow carbon microspheres@MoSe2 and hollow carbon microspheres@MoSe2/MoOx MCCs with various mixed-valence states content are well-designed and produced by a simple hydrothermal reaction or/and heat treatment process. The results reveal that the thermal treatment of hollow carbon microspheres@MoSe2 in Ar and Ar/H2 leads to the in situ formation of MoOx and multivalence state, respectively, and the enhanced content of Mo4+ in the designed MCCs greatly boosts their impedance matching characteristics, polarization, and conduction loss capacities, which lead to their evidently improved EM wave absorption properties. Amongst, the as-prepared hollow carbon microspheres@MoSe2/MoOx MCCs achieve an effective absorption bandwidth of 5.80 GHz under a matching thickness of 1.97 mm and minimum reflection loss of -21.49 dB. Therefore, this work offers a simple and universal method to fabricate core@shell hollow carbon microspheres@MoSe2/MoOx MCCs, and a novel and feasible metal valence state modulation strategy is proposed to develop high-efficiency MAMs.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38561521

RESUMO

PURPOSE: To retrospectively compare long-term oncologic outcomes of percutaneous computed tomography-guided microwave ablation (MWA) and robot-assisted partial nephrectomy (RAPN) for the treatment of stage 1 (T1a and T1b) renal cell carcinoma (RCC) patients. MATERIALS AND METHODS: Institutional database research identified all T1 RCC patients who underwent either MWA or RAPN. Models were adjusted with propensity score matching. Kaplan-Meier log-rank test analyses and Cox proportional hazard regression models were used to compare the oncologic outcomes. Patient and tumor characteristics, technical success as well as oncologic outcomes were evaluated and compared between the 2 groups. RESULTS: After propensity score matching, a total of 71 patients underwent percutaneous MWA (mean age 70 ± 10 years) and 71 underwent RAPN (mean age 60 ± 9 years). At 8-year follow-up, the estimated survival rates for MWA cohort were 98% (95% confidence interval [CI] 95-100%) for overall survival, 97% (95% CI 93-100%) for recurrence-free survival, and 97% (95% CI 93-100%) for metastasis-free survival. The matched cohort that underwent RAPN exhibited survival rates of 100% (95% CI 100-100%) for overall survival, 98% (95% CI 94-100%) for recurrence-free survival, and 98% (95% CI 94-100%) for metastasis-free survival. After performing log-rank testing, these rates were not significantly different (p values of 0.44, 0.67, and 0.67, respectively). CONCLUSION: The results of the present study suggest that both MWA and RAPN are equally effective in terms of oncologic outcome for the treatment of T1 RCC.

6.
Free Radic Res ; : 1-23, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563404

RESUMO

Microwave (MW) radiations are widely used in communications, radar and medical treatment and thus human exposure to MW radiations have increased tremendously, raising health concerns as MW has been implicated in induction of oxidative stress condition in our body. Few metallic nanoparticles (NPs) have been shown to mimic the activity of antioxidant enzymes and hence can be applied for the modulation of adverse effects caused by MW. Present study aimed to assess the biocompatibility of Bovine serum albumin (BSA) conjugated manganese dioxide nanoparticles (MNP*) and to counteract the impact of MW on the haematological system of male Wistar rats. Experiments were conducted in two sets. Set I involved biodistribution and antioxidant activity evaluation of MNP* at different doses. Results showed a dose-dependent increase in antioxidant potential and significant biodistribution in the liver, spleen, kidney, and testis, with no organ damage, indicating its biocompatibility. Experiment set II constituted the study of separate and combined effects of MW and MNP* on haematological parameters, oxidative status, and genotoxic study in the blood of rats. MW exposure significantly altered red blood cell count, hemoglobin, packed cell volume percentage, monocyte percentage, aspartate aminotransferase, Alanine aminotransferase and uric acid. MW also induced significant DNA damage in the blood. A significant increase in lipid peroxidation and a decrease in antioxidant enzyme superoxide dismutase was also observed in MW exposed group. However, these alterations were reduced significantly when MNP* was administered. Thus, MNP* showed biocompatibility and modulatory effects against MW-induced alterations in the haematological system of rats.

7.
Nanomicro Lett ; 16(1): 167, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564086

RESUMO

Microwave absorbing materials (MAMs) characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications. Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions, while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals. Herein, we have successfully implemented compositional and structural engineering to fabricate hollow SiC/C microspheres with controllable composition. The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites. The formation of hollow structure not only favors lightweight feature, but also generates considerable contribution to microwave attenuation capacity. With the synergistic effect of composition and structure, the optimized SiC/C composite exhibits excellent performance, whose the strongest reflection loss intensity and broadest effective absorption reach - 60.8 dB and 5.1 GHz, respectively, and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies. In addition, the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.

8.
Front Oncol ; 14: 1305262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571504

RESUMO

Background: The preoperative inflammatory condition significantly influences the prognosis of malignancies. We aimed to investigate the potential significance of preoperative inflammatory biomarkers in forecasting the long-term results of lung carcinoma after microwave ablation (MWA). Method: This study included patients who received MWA treatment for lung carcinoma from Jan. 2012 to Dec. 2020. We collected demographic, clinical, laboratory, and outcome information. To assess the predictive capacity of inflammatory biomarkers, we utilized the area under the receiver operating characteristic curve (AUC-ROC) and assessed the predictive potential of inflammatory biomarkers in forecasting outcomes through both univariate and multivariate Cox proportional hazard analyses. Results: A total of 354 individuals underwent MWA treatment, of which 265 cases were included in this study, whose average age was 69.1 ± 9.7 years. The AUC values for the Systemic Inflammatory Response Index (SIRI) to overall survival (OS) and disease-free survival (DFS) were 0.796 and 0.716, respectively. The Cox proportional hazards model demonstrated a significant independent association between a high SIRI and a decreased overall survival (hazard ratio [HR]=2.583, P<0.001). Furthermore, a high SIRI independently correlated with a lower DFS (HR=2.391, P<0.001). We developed nomograms utilizing various independent factors to forecast the extended prognosis of patients. These nomograms exhibited AUC of 0.900, 0.849, and 0.862 for predicting 1-year, 3-year, and 5-year OS, respectively. Additionally, the AUC values for predicting 1-year, 3-year, and 5-year DFS were 0.851, 0.873, and 0.883, respectively. Conclusion: SIRI has shown promise as a valuable long-term prognostic indicator for forecasting the outcomes of lung carcinoma patients following MWA.

9.
Adv Colloid Interface Sci ; 327: 103143, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38598925

RESUMO

Microwave-absorbing materials play a significant role in various applications that involve the attenuation of electromagnetic radiation. This critical review article provides an overview of the progress made in the development and understanding of microwave-absorbing materials. The interaction between electromagnetic radiation and absorbing materials is explained, with a focus on phenomena such as multiple reflections, scattering, and polarizations. Additionally, types of losses that affect the performance of microwave absorbers are also discussed, including dielectric loss, conduction loss, relaxation loss, magnetic loss, and morphological loss. Each of these losses has different implications for the effectiveness of microwave absorbers. Further, a detailed review is presented on various types of microwave absorbing materials, including carbonaceous materials, conducting polymers, magnetic materials, metals and their composites, 2D materials (such as MXenes and 2D-transition metal dichalcogenides), biomass-derived materials, carbides, sulphides, phosphides, high entropy (HE) materials and metamaterials. The characteristics, advantages, and limitations of each material are examined. Overall, this review article highlights the progress achieved in the field of microwave-absorbing materials. It underlines the importance of optimizing different types of losses to enhance the performance of microwave absorbers. The review also recognizes the potential of emerging materials, such as 2D materials and high entropy materials, in further advancing microwave-absorbing properties.

10.
J Environ Manage ; 358: 120742, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593733

RESUMO

The extensive use of pharmaceuticals has raised growing concerns regarding their presence in surface waters. High concentrations of sulfamethoxazole (SMX) and lincomycin (LIN), as commonly prescribed antibiotics, persist in various wastewaters and surface waters, posing risks to public health and the environment. Biochar derived from accessible biowaste, like activated sludge biomass, offers a sustainable and eco-friendly solution to mitigate antibiotic release into water systems. This study investigates the effectiveness of H3PO4-modified activated sludge-based biochar (PBC) synthesized through microwave (MW) heating for the adsorption of SMX and LIN antibiotics. The synthesis parameters of PBC were optimized using a central composite design considering MW power, time, and H3PO4 concentration. Characterization results validate the efficacy of the synthesis process creating a specific surface area of 365 m2/g, and well-developed porosity with abundant oxygen-containing functional groups. Batch and dynamic adsorption experiments were piloted to assess the adsorption performance of PBC in single and binary antibiotic systems. Results show that PBC exhibits a higher affinity for SMX rather than LIN, with maximum adsorption capacities of 45.6 mg/g and 26.6 mg/g, respectively. Based on kinetic studies chemisorption is suggested as the primary mechanism for SMX and LIN removal. Equilibrium studies show a strong agreement with the Redlich-Peterson isotherm, suggesting a composite adsorption mechanism with a greater probability of multilayer adsorption for both antibiotics. Hydrogen bonding and π-π electron sharing are suggested as the prevailing adsorption mechanisms of SMX and LIN on the modified biochar. Furthermore, a dynamic adsorption system was replicated using a fixed bed column setup, demonstrating effective removal of SMX and LIN from pure water and real wastewater samples using PBC-loaded hydrogel beads (PBC-B). These findings serve as crucial support for upcoming studies concerning the realistic application of sludge-based biochar in the removal of antibiotics from water systems.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38594565

RESUMO

Heedless disposal of oil-based fly ash contributes to the contamination of the air, water, and soil. Acid leaching of industrial solid wastes is recognized as a versatile, cost-effective, and environmentally friendly solid waste treatment approach. The present study investigated the viability of conventional leaching (CL) and microwave-assisted leaching (MAL) of predominant heavy metals from Mazut-burnt fly ash. For this purpose, the practicality of four organic acids with various specifications (ascorbic, gluconic, citric, and oxalic acids) on the dissolution efficiency of fly ash components was examined. Utilization of oxalic acid led to achieving full V recovery, complete Fe removal, and Ni enrichment in the residue in both CL and MAL setups. The Ni content of the sample was enriched from 6% in the calcinated sample to 23.7% in the oxalic acid leaching residue. Using citric acid resulted in the co-extraction of V, Ni, and Fe with nearly 70% V, 50% Ni, and 89% Fe dissolved in CL. The dissolution efficiencies were slightly lower in MAL. Oxalic acid was selected as the most promising organic acid reagent for fly ash treatment, so its CL kinetics was studied and defined by the shrinking particle model. The model showed that the controlling steps in the leaching of V differ over time, changing from a chemical reaction before 60 min to fluid film diffusion or mixing afterward. The kinetic study proved MAL as an effective technique in overcoming the leaching kinetic barriers. A life cycle assessment study was conducted to determine the environmental impacts of the proposed process. Accordingly, the MAL using oxalic acid was the most environmentally friendly process among the studied ones, and the utilization of microwaves leads to the reduction of the leaching processes' environmental impacts by decreasing the processing time.

12.
Anal Bioanal Chem ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589614

RESUMO

In this study, we demonstrate the applicability of nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) for Ca, Fe, and Se quantification in human serum using isotope dilution (ID) analysis. The matrix tolerance of MICAP-MS in Na matrix was investigated, revealing that high Na levels can suppress the signal intensity. This suppression is likely due to the plasma loading and the space charge effect. Moreover, 40Ca and 44Ca isotopic fractionation was noted at elevated Na concentration. Nine certified serum samples were analyzed using both external calibration and ID analysis. Overestimation of Cr, Zn, As, and Se was found in the results of external calibration, which might result from C-induced polyatomic interference and signal enhancement, respectively. Further investigations performed with methanol showed a similar enhancement effect for Zn, As, and Se, potentially supporting this assumption. The mass concentrations determined with ID analysis show metrological compatibility with the reference values, indicating that MICAP-MS combined with ID analysis can be a promising method for precise Ca, Fe, and Se determination. Moreover, this combination reduces the influence of matrix effects, broadening the applicability of MICAP-MS for samples with complex matrixes.

13.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583875

RESUMO

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Assuntos
Adenocarcinoma , Hipertermia Induzida , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Células PC-3 , Espécies Reativas de Oxigênio/metabolismo , Micro-Ondas , Proteína Supressora de Tumor p53/metabolismo , Hipertermia Induzida/métodos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Reparo do DNA , Apoptose , Estresse Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , DNA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
14.
Surg Open Sci ; 19: 50-62, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38585037

RESUMO

Ultrasound is an indispensable tool for intraoperative assessment and treatment of hepatopancreatobiliary pathology. As minimally invasive approaches to HPB surgery continue to expand and the benefits of parenchymal-sparing liver surgery are increasingly appreciated, skillful targeting will play an even bigger role in HPB surgical practice. Techniques for intraoperative targeting of liver lesions for the purposes of biopsy and ablation, particularly in the laparoscopic setting, are the focus of this chapter. Current evidence supports the use of ablation for a variety of liver lesions including hepatocellular carcinoma and metastatic colorectal cancer, particularly for smaller lesions. Successful targeting requires optimization of patient position and port placement. When targeting multiple lesions, thoughtful treatment sequencing is critical to maintaining visualization and optimizing outcomes.

15.
Food Technol Biotechnol ; 62(1): 78-88, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601957

RESUMO

Research background: Peanut oil (Arachis hypogaea L.) is a rich source of unsaturated fatty acids. Its consumption has been reported to have biological effects on human health. Unsaturated, especially polyunsaturated fatty acids (PUFA) found in peanut oil are highly susceptible to oxidation, leading to the formation of harmful compounds during processing and storage. The aim of this study is to prevent the oxidation of peanut oil PUFA by encapsulation in a protein-polysaccharide complex using microwave drying. Experimental approach: The combined effect of corn starch (CS) and whey protein isolate (WPI) was evaluated for ultrasound-assisted microwave encapsulation of peanut oil to prevent oxidative degradation. The effect of independent parameters, viz. CS:WPI mass ratio (1:1 to 5:1), lecithin mass fraction (0-5 %), ultrasonication time (0-10 min) and microwave power (150-750 W) on the encapsulation of peanut oil was evaluated using response surface methodology (RSM). The process responses, viz. viscosity and stability of the emulsion, encapsulation efficiency, peroxide value, antioxidant activity, free fatty acids (FFA), moisture, angle of repose and flowability (Hausner ratio (HR) and Carr's Index (CI)) were recorded and analysed to optimize the independent variables. Results and conclusions: The viscosity of all emulsions prepared for encapsulation by ultrasonication ranged from 0.0069 to 0.0144 Pa·s and more than 90 % of prepared combinations were stable over 7 days. The observed encapsulation efficiency of peanut oil was 21.82-74.25 %. The encapsulation efficiency was significantly affected by the CS:WPI mass ratio and ultrasonication. The peroxide value, antioxidant activity and FFA ranged from 1.789 to 3.723 mg/kg oil, 19.81-72.62 % and 0.042-0.127 %, respectively. Physical properties such as moisture content, angle of repose, HR and CI were 1.94-8.70 %, 46.5-58.3°, 1.117-1.246 and 10.48-22.14 %, respectively. The physical properties were significantly affected by surface properties of the capsules. The higher efficiency (74.25 %) of peanut oil encapsulation was achieved under optimised conditions of CS:WPI mass ratio 1.25, 0.25 % lecithin, 9.99 min ultrasonication and 355.41 W microwave power. Novelty and scientific contribution: The results of this work contribute to the fields of food science and technology by providing a practical approach to preserving the nutritional quality of peanut oil and improving its stability through encapsulation, thereby promoting its potential health benefits to consumers and applications in various industries such as dairy and bakery.

16.
Orthop Surg ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644512

RESUMO

OBJECTIVES: There is still controversy over the choice of treatment for end-stage spinal metastases. With the continuous development of microwave technology in spinal tumors, related studies have reported that microwave combined with techniques such as pedicle screw fixation and percutaneous vertebroplasty can achieve the purpose of tumor ablation, relieving spinal cord compression, enhancing spinal stability, effectively relieving pain, and reducing recurrence rates. This study aimed to analyze the effectiveness of microwave ablation combined with decompression and pedicle screw fixation in the palliative management of spinal metastases with pathological fractures. METHODS: This retrospective study enrolled 82 patients with spinal metastases and pathological fractures treated between January 2016 and July 2020, with 44 patients undergoing pedicle screw fixation along with laminectomy (fixation group) and the remaining 38 receiving microwave ablation in addition to the treatment provided to group fixation (MWA group). Before surgery, all patients underwent pain assessment using the visual analogue scale (VAS) and evaluation of spinal cord injury using the Frankel classification. After surgery, the patients' prognoses were assessed using the Tomita score, modified Tokuhashi score system, and progression-free survival. Additionally, we compared operative time and blood loss between the two groups. Survival analysis utilized the Kaplan-Meier method with a log-rank test for group comparisons. Paired t-tests and the Mann-Whitney U test were applied to metric and non-normally distributed data, respectively. Neurological function improvement across groups was evaluated using the χ2 test. RESULTS: All patients were followed up for a median duration of 18 and 20 months in the fixation and MWA groups, respectively, with follow-up periods ranging from 6 to 36 months. Statistically significant reductions in postoperative VAS scores were observed in all patients compared with their preoperative scores. The MWA group exhibited reduced blood loss (t = 2.74, p = 0.01), lower VAS scores at the 1- and 3-month follow-ups (t = 2.34, P = 0.02; t = 2.83, p = 0.006), and longer progression-free survival than the fixation group (p = 0.03). Although the operation times in the MWA group were longer than those in the fixation group, this difference was not statistically significant (t = 6.06, p = 0.12). No statistically significant differences were found regarding improvements in spinal cord function between the two groups (p = 0.77). CONCLUSION: Compared with decompression and pedicle screw fixation for treating spinal metastases with pathological fractures, microwave ablation combined with decompression and pedicle screw fixation showed better outcomes in terms of pain control, longer progression-free survival, and lower blood loss without increasing operative time, which has favorable implications for clinical practice.

17.
Small ; : e2402438, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644689

RESUMO

The simple and low-cost construction of a 3D network structure is an ideal way to prepare high-performance electromagnetic wave (EMW) absorption materials. Herein, a series of carbon skeleton/carbon nanotubes/Ni3ZnC0.7 composites (CS/CNTs/Ni3ZnC0.7) are successfully prepared by in situ growth of Ni3ZnC0.7 and CNTs on 3D melamine sponge carbon. With the increase of precursor, Ni3ZnC0.7 nanoparticles nucleate and catalyze the generation of CNTs on the surface of the carbon skeleton. The minimum reflection loss (RL) value of the S60min composite (loading time of 60 min) reaches -86.6 dB at 1.6 mm and effective absorption bandwidth (EAB, RL≤-10 dB) is up to 9.3 GHz (8.7-18 GHz). The 3D network sponge carbon with layered micro/nanostructure and hollow skeleton promotes multiple reflection and absorption mechanisms of incident EMW. The N-doping and defects can be equivalent to an electric dipole, providing dipole polarization to increase dielectric relaxation. The uniform Ni3ZnC0.7 nanoparticles and CNTs play a key role in dissipating electromagnetic energy, blocking heat transfer, and enhancing the mechanical properties of the skeleton. Fortunately, the composite displays a quite low thermal conductivity of 0.09075 W m·K-1 and good flexibility, which can provide insulation and quickly recover to its original state after being stressed.

18.
ChemSusChem ; : e202400151, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629614

RESUMO

Different forms of HCOOH in the depolymerization system play an important role in governing the monomeric products from lignin. We reported two strategies for the introduction of HCOOH to enrich the monophenols from kraft lignin by microwave-assisted depolymerization. The reaction of lignin models showed that HCOOH was in favor of the cleavage of C-O bonds (ß-O-4 typically) and partial C-C bonds (Cα-Cß). Subsequently, Microwave-assisted depolymerization of lignin with two strategies was conducted via a designed dynamic vapor flow reaction system. Strategy A with HCOOH as pretreatment solvent showed excellent monophenols enrichment with total mass yields of 193.71 mg/g (lignin basis). Strategy B using HCOOH as reforming solvent vapor significantly increased the monophenols selectivity. It presented unique reforming and upgrading performance by generating catechol (42.59 mg/g, lignin basis) and homovanillic acid (17.58 mg/g, lignin basis). This study provided potential strategies for the efficient conversion of kraft lignin into high-value platform chemicals.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38624131

RESUMO

The exceptional benefits of carbon aerogels, including their low density and tunable electrical characteristics, infuse new life into the realm of creating ultralight electromagnetic wave absorbers. The clever conceptualization and straightforward production of carbon-based aerogels, which marry aligned microporous architecture with nanoscale heterointerfaces and atomic-scale defects, are vital for effective multiscale microwave response. We present an uncomplicated synthesis method for crafting aligned porous Ni@C nanobelts anchored on N, S-doped carbon aerogels (Ni@C/NSCAs), featuring multiscale structural intricacies─achieved through the pyrolysis of freeze-cast Ni-MOF nanobelts and chitosan aerogel composites. The well-ordered porous configuration, combined with multiple heterointerfaces adopting a "nanoparticles-nanobelts-nanosheets" contact schema, along with a wealth of defects, adeptly modulates conductive, polarization, and magnetic losses to realize an equilibrium in impedance matching. This magnetically doped carbon aerogel showcases an impressive effective absorption bandwidth of 8.96 GHz and a minimum reflection loss of -68.82 dB, while maintaining an exceptionally low filler content of 1.75 wt %. Additionally, the applied coating exhibits an astonishing radar cross-section reduction of 51.7 dB m2, signifying its superior radar wave scattering capabilities. These results offer key insights into the attainment of broad-spectrum microwave absorption features by enhancing the multiscale structure of current aerogels.

20.
Zhongguo Zhong Yao Za Zhi ; 49(3): 625-633, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621866

RESUMO

Extracts are important intermediates in the production of traditional Chinese medicines preparations. The drying effect of extracts will directly affect the subsequent production process and the quality of the preparation. To meet the requirements of high drug loading, short time consumption, and simple production process of personalized traditional Chinese medicine preparations, this study explored the application of multi-program microwave vacuum drying process in the extract drying of personalized traditional Chinese medicine preparations. The influencing factors of microwave vacuum drying process were investigated for 5 excipients and 40 prescriptions. Taking the feasibility of drying, drying rate, drying time, and dried extract status as indicators, this study investigated the feeding requirements of microwave vacuum drying. With the dried extract status as the evaluation indicator, the three drying programs(A, B, and C) were compared to obtain the optimal drying condition. The experimental results showed that the optimal feeding conditions for microwave vacuum drying were material layer thickness of 2 cm and C program(a total of 7 drying processes), which solved the problem of easy scorching in microwave drying with process management. Furthermore, the preset moisture content of the dried extract in microwave drying should be 4%-5%, so that the dried extract of traditional Chinese medicine preparation had uniform quality, complete drying, and no scorching. This study lays a foundation for the application of microwave drying in the production of traditional Chinese medicine preparations, promoting the high-quality development of personalized traditional Chinese medicine preparations.


Assuntos
Medicina Tradicional Chinesa , Micro-Ondas , Vácuo , Dessecação/métodos , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...